
Digital System Hierarchy

1

To understand the role 

that logic circuits play in 

digital systems, let’s look 

at the structure of a 

typical computer.



Digital System Hierarchy

2

As shown in the middle 

of the figure, a logic 

circuit comprises a 

network of connected 

logic gates.



Digital Hardware
Digital hardware products are often built from basic 

logic circuits implemented in integrated circuits (ICs). 

Here is a range of ICs that are commonly used:

◼ Standard Chips – Discrete implementation of common logic 

functions

◼ Programmable Logic Devices (PLDs) – chips that contain 

circuitry that can be configured by the user to implement a 

wide range of different logic circuits.

◼ Field Programmable Gate Arrays (FPGAs) – More complex 

than PLDs. Still reconfigurable hardware

◼ Masked technology: Application Specific ICs (ASICs) - (not 

reconfigurable) 

➢ Types include Gate Array, Standard Cell, Full Custom

3



Computer Aided Design

◼ Logic circuits can be represented a number of 

different ways. The previous example showed a 

schematic representation.

◼ Modern design of logic circuits depends heavily on 

Computer Aided Design (CAD) software tools. These 

tools simplify the design and testing of a logic circuit.

◼ In this course we will use Verilog to define logic 

designs.

4



Other Terms or Concepts

◼ Boolean Logic: a complete system for logical operations, used 

in many disciplines.  It was named after George Boole, who first 

defined an algebraic system of logic in the mid 19th century.  

(Ref: Wikipedia)

◼ In terms of complexity, logic circuits consist of:

➢ Combinational logic – Outputs are a function of only the inputs.  These 

are implemented using Logic Gates.

➢ Sequential logic – Outputs are a function of both the inputs and current 

outputs.  These are implemented using Flip-Flops and Registers.  (Both 

of these components have memory.) 

5



Variables and Functions

6

Boolean variables – can 

take one of the two values 

0 (false) and 1 (true).

The simplest binary 

element is a switch that 

has two states. If a given 

switch is controlled by an 

input variable x, then we 

will say that the switch is 

open if x=0 and closed if 

x=1.



Variables and Functions - continued

7

The switch turns a light 

bulb on or off.

If the output (denoted as L) 

is defined as the state of 

the light, we say that L=0 

when the light is off; L=1 

when the light is on. We 

can describe the state of 

the light as a function of 

the input variable x.

L(x) = x 



Variables and Functions - continued

8

logic AND function:

L(x1, x2) = x1∙x2

where L=1 if x1=1 and x2=1; L=0 

otherwise. The “∙” is the AND 

operator.

logic OR function:

L(x1, x2) = x1+x2

where L=1 if x1=1 or x2=1 or if 

x1=x2=1 ; L=0 if x1=x2=0. The “+” 

is the OR operator.



Inversion or Complement

9

where L=1 if x=0; L=0 if x=1. 

NOT operators:  ¯  ´ !  ~ 

The NOT operator can also be 

applied to complex expressions

( )L x x=

' ! ~x x x x= = =

1 2 1 2( , )f x x x x= +



Truth Table

10

Logic operations (e.g. AND, 

OR) can also be represented 

by Truth Table that assigns 

an output value for each 

combination of input values.

Truth tables can also be 

used to depict information 

involving complex logic 

functions. 

Concept of Binary counting



Truth Table - continued

11

Truth tables grow exponentially 

in size with the number input 

variables.

In general, for n input variables 

the truth table has      rows. 2n



Logic Gates and Networks

12

The three basic logic operations 

(AND, OR, NOT) can be used to 

implement logic functions of any 

complexity.

Each logic operation can be 

implemented electronically with 

transistors, resulting in a circuit 

element called a logic gate.

We use graphical symbols to 

represent logic gates.



Digital Representation of Information

13

▪ 8 bits (8 0s or 1s) can represent 2^8 = 256 different patterns.

▪ These 256 patterns can be assigned to anything that serves a purpose.

▪ Unsigned integers (0 to 255)

▪ Signed integers (-128 to 127)

▪ Fixed-point numbers (0, 0.25, 0.5, 0.75, 1.0 … 63.0, 63.25, 63.75)

▪ Two Binary Coded Decimal (BCD) digits (0111 0011 = 73)

▪ A character of text (ASCII or plain text: 96 printable, 32 control, 128 other)

▪ The results of flipping a coin 8 times (0 = heads, 1 = tails)

▪ 64 bits can represent 2^64 =~ 1.845*10^19 different patterns.

▪ Floating point numbers (-10^308 to -10^-308, 0, 10^-308 to 10^-308, to 15 

significant digits.

▪ Bits can represent numbers, text, audio, images, video, 3D objects, etc.

▪ Managing bits allows managing all these real-world objects.



Figure 2.11.   An example of a logic circuit.

Logic Network- example

14



Chapter 2 Introduction to Logic Circuits

◼ Boolean expressions – contain boolean variables 

(or constants) and basic logic operators. E.g.

Boolean Algebra provides a powerful tool that can 

be used for designing and analyzing logic circuits.

Boolean Algebra

15



Chapter 2 Introduction to Logic Circuits

Boolean Algebra – Axioms & Theorems

16



Chapter 2 Introduction to Logic Circuits

Boolean Algebra – More Properties

17



Chapter 2 Introduction to Logic Circuits

Boolean Algebra – More Properties

18



Chapter 2 Introduction to Logic Circuits

Boolean Algebra – algebraic manipulation

19

The preceding axioms, theorems, and properties provide 

information necessary for performing algebraic manipulation 

of more complex expressions. For example, let us prove the 

validity of the logic equation:



Chapter 2 Introduction to Logic Circuits

Ways of describing Logical Functions

20

• Textual Description (“Requirements” or “Specification”)

• Truth Table

• Minterms (∑m(…)) or Maxterms (∏(M(…))

• Logic expression (standard SOP or POS, simplified)

• Timing Diagram

• Venn Diagram

• Switches

• Logic circuit (schematic, gates)

• Hardware description language (Verilog)



Chapter 2 Introduction to Logic Circuits

Hardware Description Languages

21

▪ A Hardware Description Language (HDL) is similar to a 

computer programming language (C, C++, Java, Python…) 

except that it describes hardware.

▪ Common HDLs

➢ VHDL (Very high speed integrated circuit HDL)

➢ Verilog

➢ Many others (vendor specific)

▪ VHDL and Verilog are IEEE standards 

➢ They offer portability across different CAD tools and 

different types of programmable chips.



Chapter 2 Introduction to Logic Circuits

Introduction to Verilog

22

▪ The designer writes a logic circuit description in Verilog.

▪ The Verilog compiler translates this code into simulation form.

▪ The Verilog code is simulated and tested.

▪ Synthesis realizes the design on the target hardware (for 

example, an FPGA).

▪ Verilog allows a designer to represent circuits in two 

fundamentally different ways: 

➢ Structural – in terms of gates – how to implement

➢ Behavioral – in terms of expressions – what to do



Chapter 2 Introduction to Logic Circuits

Structural Specification (by gates)

23

A logic circuit is specified in the form of a module that contains 

the statements that define the circuit.

f

x3

x1

x2

module example1(x1, x2, x3, f);

input x1, x2, x3;

output f;

and(g, x1, x2);

not(k, x2);

and(h, k, x3);

or(f, g, h);

endmodule



Chapter 2 Introduction to Logic Circuits

Behavioral Specification (what it does)

24

module example2(x1, x2, x3, f);

input x1, x2, x3;

output f ;

assign f = (x1 & x2) | (~x2 & x3);

endmodule

1 2 2 3f x x x x= +

module example3(w, x, y, z);

input x, y, z;

output w;

assign w = (x | ~y) & z;

endmodule

( )'w x y z= +



Chapter 2 Introduction to Logic Circuits

Full Adder Circuit 

25



Chapter 2 Introduction to Logic Circuits

Full Adder – Behavioral Model

26

module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;

output reg s, Cout;

always @(x, y, Cin)

{Cout, s} = x + y + Cin;

endmodule

The code describes behavior and the Verilog complier 

implements the details however it considers to be optimum.



Chapter 2 Introduction to Logic Circuits

Combinational Blocks

27

▪ Start with Multiplexers

▪ A multiplexer (MUX) circuit has

- A number of data inputs

- One or more select inputs

- One output

▪ It passes the signal value on one of its data inputs to its 

output based on the value(s) of the select signal(s).

▪ Usually, the number of data inputs, n, is a power of two. E.g. 

2-to-1 multiplexer, 4-to-1 multiplexer, 8-to-1 multiplexer, 16-

to-1 multiplexer …



Chapter 2 Introduction to Logic Circuits

A 4-to-1 Multiplexer

28

f 

s 1 

w 0 
w 1 

00

01

(b) Truth table 

w 0 

w 1 

s 0 

w 2 
w 3 

10

11

0 

0 

1 

1 

1 

0 

1 

f s 1 

0 

s 0 

w 2 

w 3 

(a) Graphic symbol 

f 

(c) Circuit 

s 1 

w 0 

w 1 

s 0 

w 2 

w 3 

1 0 1 00 0 1 1 2 1 0 3f s s w s s w s s w s s w= + + +



Chapter 2 Introduction to Logic Circuits

Decoders

29

▪ A binary decoder has n data inputs and 2n outputs. 

▪ Only one output is asserted at any time (one-hot encoded) 

and each output corresponds to one valuation of the inputs.

▪ An enable input (En) is used to disable the outputs

- If En=0, none of the decode outputs is asserted

- If En=1, one of the outputs is asserted according to the valuation of 

the inputs.

0 

w n 1 –

n 
inputs

EnEnable

2 n 

outputs 

y 0 

y 2 n 1 –

w 



Chapter 2 Introduction to Logic Circuits

A 2-to-4 Decoder

30

0 

0 

1 

1 

1 

0 

1 

y 0 w 1 

0 

w 0 

(c) Logic circuit 

w 1 

w 0 

x x 

1 

1 

0 

1 

1 

En

0 

0 

0 

1 

0 

y 1 

1 

0 

0 

0 

0 

y 2 

0 

1 

0 

0 

0 

y 3 

0 

0 

1 

0 

0 

y 0 

y 1 

y 2 

y 3 

En

w 0 

En

y 0 

w 1 y 1 

y 2 

y 3 

(a) Truth table 

(b) Graphical symbol 



Chapter 2 Introduction to Logic Circuits

Demultiplexers

31

▪ A multiplexer multiplexed n data inputs to a single output.

▪ A circuit that performs the opposite, placing the value of 

single data input onto multiple data outputs, is called a 

demultiplexer.

▪ A n-to-2n decoder implements a 1-to-n demultiplexer



Chapter 2 Introduction to Logic Circuits

Encoders

32

▪ An encoder performs the opposite function of a decoder.

▪ A binary encoder encodes information (data) from 2n

inputs into an n-bit code (output) . 

- Exactly one of the inputs should have a value of 1

- The outputs represent the binary number that identifies which input 

is equal to 1. 

▪ Encoders reduce the number of bits needed to represent 

given information.

▪ Practical use: transmitting information in digital system.



Chapter 2 Introduction to Logic Circuits

Encoders - continued

33

2 n 

inputs

w 0 

w 
2 n 1 –

y 0 

y n 1 –

n 
outputs 

A 2n-to-n binary encoder.

0 

0 

1 

1 

1 

0 

1 

w 3 y 1 

0 

y 0 

0 

0 

1 

0 

w 2 

0 

1 

0 

0 

w 1 

1 

0 

0 

0 

w 0 

0 

0 

0 

1 

w 1 

w 0 

y 0 

w 2 

w 3 
y 1 

A 4-to-2 binary encoder.



Chapter 2 Introduction to Logic Circuits

Code Converters

34

▪ The purpose of code converter circuits is to convert from 

one type of input encoding to another type of output 

encoding. 

▪ For example, 

- A 3-to-8 decoder converts from a binary number to a one-hot 

encoding at the output. 

- A 8-to-3 encoder performs the opposite. 

▪ Many different types of code converter circuits can be 

constructed. 

- One common example is a BCD-to-7-segment decoder.



Chapter 2 Introduction to Logic Circuits

Arithmetic Comparison Circuits

35

▪ A useful type of arithmetic circuit is called comparator

which compares two n-bit binary numbers. 

▪ For two n-bit numbers A and B, the comparator produces 

three outputs, called AeqB, AgtB, and AltB . 

- The AeqB output is set to 1 if A=B

- The AgtB output is set to 1 if A>B

- The AltB output is set to 1 if A<B

▪ The desired comparator can be designed by creating a truth 

table that specifies the three outputs as functions of A and 

B. However, even for a moderate value of n, the truth table 

is large.



Chapter 2 Introduction to Logic Circuits

A Four-Bit Comparator Circuit

36

i 0 

i 1 

i 2 

i 3 

b 0 

a 0 

b 1 

a 1 

b 2 

a 2 

b 3 

a 3 

AeqB

AgtB

AltB



Chapter 2 Introduction to Logic Circuits

Combinational vs Sequential Circuits

37

▪ Up until now we considered combinational circuits

where  the value of each output depends solely on the 

values of signals applied to the input.

▪ Another class of circuits are referred to as sequential 

circuits where the outputs depend not only on the 

current inputs, but also the past behavior of the circuit.  



Chapter 2 Introduction to Logic Circuits

Sequential Circuits

38

▪ Sequential circuits include storage elements that store the 

values of logic signals.

▪ The contents of the storage elements represent the state of 

the circuit.

▪ Input value changes may leave the circuit in the same state 

or cause it to a new state.

▪ Over time, the circuit changes through a sequence of states 

as a result of changes in the inputs.



Chapter 2 Introduction to Logic Circuits

Summary of Storage Elements

39

▪ Basic Latch: Feedback connection of NOR gates (active-

high Set, Reset  inputs) or NAND gates (active-low nSet, 

nReset inputs).  Stores one bit of information.

▪ Gated Latch: A Basic Latch with an additional level sensitive

control signal (Clock) that when active allows normal latch 

operation.

▪ Gated SR Latch 

▪ Gated D Latch

▪ Flip-Flop: A storage element based on a gated latch, with 

an additional edge sensitive control signal (Clock).

▪ D (Data) Flip-Flop

▪ T (Toggle) Flip-Flop

▪ JK (Set-Reset-Toggle) Flip-Flop



Chapter 2 Introduction to Logic Circuits

Basic SR Latch

40

▪ A more usually way of drawing the previous circuit is shown 

below. 

▪ The table describes its behavior. Since it does not represent 

a combinational circuit in which the values of the outputs are 

determined solely by the current values of the inputs, it is 

often called a characteristic table rather than a truth table.



Chapter 2 Introduction to Logic Circuits

Level vs Edge Sensitive

41

▪ Since the output of the D latch is controlled by the level 

(0 or 1) of the clock input, the latch is said to be level 

sensitive.

- All of the latches we have seen have been level sensitive.

▪ It is possible to design a storage element for which the 

output only changes at the point in time when the clock 

changes from one value to another.

▪ Such circuits are said to be edge triggered. 



Chapter 2 Introduction to Logic Circuits

Flip-Flops

42

▪ In the level-sensitive latches, the state of the latch keeps 

changing according to the values of input signals during the 

‘active’ period of the clock signal.

▪ There is also a need for storage elements that can change 

their states no more than once during one clock cycle. 

▪ The term flip-flop denotes a storage element that changes 

its output at the edge of a controlling clock signal.



Chapter 2 Introduction to Logic Circuits

JK Flip-Flop Circuit

43

J Q

Q

K

0

1

Q t 1+( )

Q t( )

0

(b) Truth table (c) Graphical symbol

J

0

0

0 11

1 Q t( )1
K

D Q

Q

Q

Q

J

Clock

(a) Circuit

K



Chapter 2 Introduction to Logic Circuits

Counters

44

▪ Counters are special types of arithmetic circuits that are 

used for the purpose of counting

- Circuits that can increment or decrement a count by 1

▪ Counter circuits are used for many purposes

- Count the number of occurrences of certain events

- Generate timing intervals for control of various tasks in a system

- Track time elapsed between specific events

▪ It is convenient to introduce counters built with T flip-

flops because the toggle feature is naturally suited for 

implementing the counting operation. 



Four Bit Up-Counter with Parallel Load

45

• MUXs select either the 

counting control 

signals or load value D.



Chapter 2 Introduction to Logic Circuits

Four-Bit Up-Counter with Parallel Load
(and asynchronous reset)

46

module upcount (R, Resetn, Clock, E, L, Q);

input [3:0] R;

input Resetn, Clock, E, L;

output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)

if (!Resetn)

Q <= 0;

else if (L)

Q <= R;

else if (E)

Q <= Q + 1;

endmodule


